МЕНЮ
КАТЕГОРИИ

Удаление тяжелых металлов

Если Вам необходима помощь в выборе нашей продукции,
заполните опросный лист и вышлите нам на почту matsura@composite.ru
Мы оперативно ответим и проконсультируем Вас.

Реагент

Описание

 Заказать

TMT - 15

Осадитель тяжелых металлов на основе тримеркаптотриазина

Контакты
Lewatit Monoplus TP207

Смола предназначена для селективного удаления катионов тяжелых металлов из слабокислых

и слабощелочных растворов.

Контакты

AMERSEP MP7 (Амерсеп)

Осадитель тяжелых металлов на основе политиокарбоната натрия

Контакты

AMERSEP MP3 (Амерсеп)

Осадитель тяжелых металлов на основе диметил-дитиокарбамата натрия

Контакты

Методы удаления ионов тяжелых металлов из сточных вод.

Для удаления соединения ртути, хрома, кадмия, цинка, свинца, меди, никеля, мышьяка из СВ наиболее распространены реагентные методы очистки, сущность которых заключается в переводе растворимых в воде веществ в нерастворимые при добавлении различных реагентов с последующим отделением их от воды в виде осадков. Недостатком реагентных методов очистки является безвозвратная потеря ценных веществ с осадками. В качестве реагентов для удаления из СВ ионов тяжелых металлов используют гидроксиды кальция и натрия, карбонат натрия, сульфиды натрия, различные отходы, например феррохромовый шлак. Наиболее широко используется гидроксид кальция. Осаждение металлов происходит в виде гидроксидов.

Очистка от соединений ртути. СВ, загрязненные ртутью и ее соединениями, образуются при производстве хлора и едкого натра, в других процессах электролиза с использованием ртутных электродов, на ртутных заводах, в некоторых гальванических производствах, при изготовлении красителей, углеводородов, на предприятиях, использующих ртуть как катализатор.

В производственных СВ может присутствовать металлическая ртуть, неорганические и органические ее соединения. В неорганических соединениях токсичны главным образом ионы Hg2+, поэтому наиболее опасны хорошо растворимые диссоциирующие соли. Органические соединения ртути весьма токсичны и отличаются от неорганических солей тем, что не дают реакции на ионы Hg. Для выделения из СВ ртути используют методы восстановления: сульфидом железа, гидросульфидом натрия, гидразином, железным порошком, газообразным сероводородом и др. Широко изучаются сорбционные методы очистки от ртути. Для осаждения Hg в СВ сначала добавляют сульфид натрия, гидросульфид натрия или сероводород. Затем обрабатывают воду хлоридами натрия, калия, магния, кальция или сульфитом магния в количестве 0,1 г/л. В этих условиях сульфид ртути осаждается в виде гранул. Для удаления тонкодисперсных коллоидных частичек сульфида ртути целесообразно добавлять коагулянты А12(SО4)3 18Н2O, FeSO4·7H2O и др. Осадок отделяют от СВ на вакуум-фильтрах или фильтр-прессах.

Очистка от соединений цинка, меди, никеля, свинца, кадмия, кобальта. Соли этих металлов содержатся в сточных водах горнообогатительных фабрик, металлургических, машиностроительных, металлообрабатывающих, и др. заводов.

При обработке кислых вод оксидом кальция и гидроксидом натрия ионы указанных тяжелых металлов, содержащиеся в стоках, связываются в труднорастворимые соединения. Состав солей зависит от рН среды. Так, при рН 7 осаждается гидроксид-сульфат цинка состава ZnSO4·3Zn(OH)2, а при повышении рН до 8,8 составу осадка соответствует формула ZnSO4•5Zn(OH)2. В сильнощелочной среде твердая фаза представляет собой в основном гидроксид. Для удаления из сточных вод меди и кадмия разработан процесс контактирования их с диоксидом серы или сульфитами и порошкообразным металлом, например цинком или железом. При этом металл восстанавливает сульфиты до сульфидов, которые с тяжелыми металлами образуют труднорастворимые сульфиды. Очистка сточных вод от никеля основана на выделении его из раствора в виде труднорастворимых соединений:

Для повышения степени очистки СВ, содержащих тяжелые металлы, после осаждения их гидроксидов известью при рН = 8,5 и отделения осадка вводить в осветленную сточную воду раствор Na2SiO3 в количестве, в 5-30 раз превышающем стехиометрическую норму. После отделения осадка сточная вода с небольшим содержанием ионов тяжелых металлов может быть возвращена в систему оборотного водоснабжения. Осаждение сульфидов происходит при более низком значении рН, чем гидроксидов и карбонатов. Например, сульфид цинка осаждается при рН = 1,5, сульфиды никеля и кобальта при рН = 3,3. Для удаления небольших количеств ионов тяжелых металлов возможно использовать пирит. Процесс проводят фильтрованием СВ через гранулированный пирит. Кроме пирита для этой цели можно использовать сульфид любого другого нетоксичного металла, произведение растворимости которого больше произведения растворимости сульфида извлекаемого из сточной воды металла.

Очистка от соединений мышьяка. Предельно допустимая концентрация мышьяка в водоемах равна 0,05 мг/л. Для очистки сточных вод от мышьяка применяют реагентные, сорбционные, электрохимические, экстракционные и другие методы. Выбор метода зависит от формы растворенного мышьяка, состава, кислотности и других показателей воды. Для очистки больших объемов воды с высоким содержанием мышьяка применяют осаждение в виде труднорастворимых соединений (арсенаты и арсениты щелочноземельных и тяжелых металлов, сульфиды и триоксид мышьяка). Для очистки от кислородсодержащих соединений мышьяка широко применяют известковое молоко. При этом в зависимости от состава сточных вод и условий очистки (рН, температура, расход реагента) выпадают в осадок арсенаты и арсениты различного состава. Присутствие в сточных водах ионов тяжелых металлов повышает степень очистки от мышьяка, так как происходит осаждение арсенатов и арсенитов этих металлов.

Очистка от солей железа. Железо содержится в сточных водах химических, металлургических, машиностроительных, металлообрабатывающих, нефтехимических, текстильных, химико-фармацевтических и других производств. Для обезжелезивания вод применяют аэрацию, реагентные методы, электродиализ, адсорбцию, обратный осмос. В процессе аэрирования происходит окисление двухвалентного железа в трехвалентное. Реакция окисления в водном растворе протекает по схеме:4Fe2++O2+2H2О = 4Fe3++4OH-, Fe3++3H2O = Fe(OH)3+3H+

или суммарно: 4Fе2+2+10Н2О = 4Fе(ОН)3+8Н+. Реагентные методы Для этой цели используют хлор, хлорат кальция (хлорную известь), перманганат калия, озон, оксид кальция (известь), карбонат натрия (соду) и др.

Очистка от соединений марганца.Удаление из воды марганца может быть достигнуто следующими методами: 1) обработкой воды перманганатом калия 2) аэрацией, совмещенной с известкованием;